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Abstract—Reciprocal ensembles of coupled transmission lines
have been studied for many years using matrix techniques. In this
paper, the lossless multiconductor transmission line model is ex-
tended te permit a description of gyromagnetic coupling effects. The
novel ingredient which allows such an extension is the incorporation
of distributed gyrators into the elemental line-length prototype. These
gyrators provide antireciprocal coupling between the ensemble con-
ductors. The amount of coupling is expressed by a geometry-depen-
dent factor which in effect measures a given structure relative to an
ideal Faraday rotator in the same medium. The gyromagnetic coupling
factor, in conjunction with the derived expressions for mode propaga-
tion factors and characteristic impedances, provides a means of
interpolating between the known limits of no coupling and ideal
Faraday rotation. General relations are derived for two-line systems
and for symmetrical, quasi-TEM three-line systems.

INTRODUCTION

HE TRANSMISSION-LINE model is one of the
Toldest and most useful tools of the designer of

microwave networks. While it may seem a crude
approximation to the intricacies of the electromagnetic
field distribution in any given problem situation, its
very simplicity allows a keener insight into the gross
behavior of such networks. Furthermore, microwave
network problems are usually concerned only with the
behavior of sets of scattering parameters, and not with
the field distributions per se. Therefore, it is frequently
most expedient to formulate the scattering properties
of a junction as a more or less complicated transmission-
line problem, solving for the various propagation factors
and characteristic impedances by one of the well-known
integral equation methods leading to iterative, pertur-
bational, or variational formulas.

The appearance of microwave ferrites on the scene in
recent years has, however, led to a rather awkward
situation. “Exact” methods (i.e., boundary-value prob-
lem formulations) of solving propagation problems in
magnetized ferrites have been of value in a number of
important but limited cases. These have usually
amounted to determining the propagation factor and
possibly also the characteristic impedance of single,
isolated lines. As ferrite component technology has
matured, circuits have been built using two or more
coupled lines in a medium partially or completely filled
with ferrite to obtain nonreciprocal effects. Analysis of
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this type of configuration has so far been restricted to
special cases, such as those treated by Boyet and Seidel!
and by Jones, Matthaei, and Cohn,? using perturba-
tional methods.

The present paper is the result of an attempt to gen-
eralize the matrix transmission-line problem in a way
that allows for gyromagnetic coupling between con-
ductors in an ensemble. The model is essentially an
heuristic one, chosen solely because it appears to be the
simplest such model which fits the limiting cases prop-
erly. The novel ingredient which allows nonreciprocal
coupling to occur is the introduction of distributed gy-
rators into the elemental prototype of transmission-line
length. Chief emphasis is placed on an exploration of the
characteristics of the two-line system with gyromagnetic
coupling only and with mixed reciprocal and nonrecip-
rocal coupling. Because the symmetrical three-line en-
semble is of interest in circulator applications, a short
discussion of its characteristics is included.

EssENTIALS OF THE MATRIX TRANSMISSION
LinE PrROBLEM

Since the nonreciprocal model to be discussed pres-
ently is a generalization of the conventional matrix
transmission-line problem, it is appropriate to review
here briefly the nature of this problem. For the simplest
case of a single, isolated, uniform transmission line, it is
customary to define an elemental prototype section of
length dz containing a distributed shunt admittance and
a distributed excitation. Analysis of this prototype sec-
tion leads to the familiar differential equations,

V' = — jwLl (1)
I = — juCV. (2)

I

Equations (1) and (2) are then combined to give second-
order differential equations in V and I of the form

V' 4+ BV =0 3)
I+ k=0 (4)

where k2=w2L(C. Assuming solutions of the form V
= Ve®? and I =Ie#® leads to the characteristic equation

g =0 ®)

! H. Boyet and H. Seidel, “Analysis of nonreciprocal effects in an
n-wire ferrite-loaded transmission line,” Proc. IRE, vol. 45, pp. 491—
495, April 1957.

2E. M. T. Jones, G. L. Matthaei, and S. B. Cohn, “A nonrecipro-
cal, TEM-mode structure for wide-band gyrator and isolator appli-
cations,” IRE Trans. on Microwave Theory and Technigues, vol.
MTT-7, pp. 453-460; October 1959.
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b TRANSMISSION -LINE ENSEMBLE (4-LINE CASE SHOWN)
Fig. 1. Reciprocal transmission-line prototype sections.
with solutions 8= + k. Using this result in conjunction
with either (1) or (2) allows the ratio of ¥ to I to be pre-
scribed for any root of (5) in the form of a “characteristic
impedance,”

wl 8

N AL 6
¢ B wC ©)

| <

Applying the results of (5) and (6) to the assumed form
of solutions for V and I, plus load and generator end
conditions then prescribes the total z dependence of the
phasors ¥ and I.

All of the previous information is, of course, com-
pletely familiar to engineering students at the under-
graduate level. What is perhaps not so familiar is the
generalization of this problem to ensembles of lossless,
uniform transmission lines. In this latter case, the ordi-
nary differential equation is replaced by a system of dif-
ferential equations, and the characteristic (5) goes over
into a matrix eigenvalue equation. As before, the start-
ing point is an elemental section of line length dz, having
series distributed self and mutual inductances, and
shunt distributed capacities to ground and between
lines. Equations (1) and (2) then become systems of
equations, which can be written in matrix notation

V' = — jwLI (7
I' = — juCV. (8)

Here V and I are column vectors of voltage and current,
with each member of the columns representing the volt-
age (with respect to a reference ground) and current on
a particular line. Similarly V' and I’ are columns of
dV/dz and dI/dz for the same lines, respectively. The
quantities L and C are square matrices of generalized
series inductance and shunt capacity, derived from the
elemental prototype section of line length. Since the pro-
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totype is that of lossless network, it follows that L and
C are nonsingular Hermitian matrices, becoming real
and symmetric for the reciprocal case. Equations (7)
and (8) are now combined in a manner formally identi-
cal with the combining of (1) and (2) to give the matrix
differential equations

V' + RV =0 (9)
I'" + KM =0 (10)

with K?=w?LC, and the dagger indicating Hermitian
conjugation of the matrix. Assuming solutions of the
form V=Ve#: and I =1Ie#: then leads to the matrix
eigenvalue equations

(K — BE)V = (K" — B2E)I = 0 (11)

where E is the unit matrix. The quantities 8% are seen
to be eigenvalues of the matrices K2 or K*t, the results
being identical for either choice. In general, the number
of distinct values of 82 may be as large as the rank of
K2, but it frequently happens that degeneracies occur.
Finally, since L and C are both Hermitian, the values
of 82 must be real.

Nondegenerate values of 32 are, of course, associated
with particular modes of voltage-current distribution
which propagate as traveling waves with a uniquely
defined propagation factor. These modal distributions
are given by the eigenvectors v, of voltage and 7, of
current, associated with the /th value of 82, and defined
by

K%, = 8, (12)

and

K”I.i = ‘8{21'“ (13)
The eigenvectors v, and 7; are chosen normalized so that
both vectors have equivalent length, satisfying a niode
power orthogonality relationship of the form

(14)

where 0 is the Kronecker delta. The mode voltage and
current vectors are, of course, multiplied by complex
amplitude coefficients U; and J, to be determined from
end conditions. The amplitude of the current vector is
related to that of the voltage vector through a mode
characteristic impedance Z, in a manner analogous to
the single-line case,

iiTVj = 5”'

Ui=2J. (15)

This impedance can be determined (along with v, if de-
sired) by substituting 7, and 8, into a form of (17),

w .
[];VL = LI: (16)
B8

v

Because J, has been taken as unity on the right-hand
side of the previous expression, it follows from (15) that
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U,=Z; on the left-hand side. Then multiplying by 1.
and applying (14)

w . -
Zi = - L;TLI,:.

[

(17

Of course, it is possible to work through (8) and obtain
the reciprocal of Z;, the mode characteristic admittance
Yi:

w
Yi = — V@'TCVZ'.

7

(18)

Note that since i;tLi; and v,tCv; are Hermitian forms
and hence equal to real numbers, the characteristic
immitances Z; and V; are either pure real or pure imag-
inary, depending on the nature of 8,.

When degenerate values of 82 occur, a certain flexi-
bility will exist in the choice of the eigenvectors. How-
ever, care must be exercised to ensure that mode orthog-
onality in the power sense is obtained. Thus, an accept-
able method of generating # eigenvectors of current and
voltage for an n-fold degeneracy of 82 is to select one
voltage or current vector arbitrarily and calculate its
partner and characteristic impedance using (17) or (18)
as appropriate. A second eigenvector of the original type
is then constructed to be orthogonal to the first partner,
and the process repeated until # eigenvectors of both
types and » characteristic impedances are obtained.

EssENTIAL FOorRM OF THE MODEL

Transmission lines coupled in a magnetized ferrite
medium have been observed to behave in a nonrecipro-
cal manner. Therefore, it is clear that the strictly recip-
rocal case must be modified to agree with the more gen-
eral behavior. Not just any modification will do, of
course; the resulting model must have characteristics
which are permissible on the basis of network theory
and which are in accord with the field theoretical results
for propagation in magnetized ferrites in certain limiting
cases. There are two such limiting cases of importance
here, 1), the TEM-limit case in which no Faraday rota-
tion is permitted and 2) the TEM case in which no con-
straint is imposed on Faraday rotation. For the first
situation, Suhl and Walker® have shown that the
medium takes on an effective permeability u, given by

Mt fom

He = 2 (19)

JTAR o T
Here u; and u_ are eigenvalues of the transverse Polder

tensor for a longitudinally magnetized infinite ferrite
medium:

(20
(21)

By = p ok

B = 4K

3 H. Suhl and L. R. Walker, “Topics in guided wave propagation
through gyromagnetic media,” Bell Telephone System Monograph
2322, pp. 166-173, 1954.
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The second case is the classic situation in which a
linearly polarized plane wave propagates in a longi-
tudinally magnetized infinite ferrite medium. Under
these circumstances it is appropriate to choose two
orthogonal axes in the transverse plane and define the
system as a pair of transmission lines whose excitations
are proportional to the projections of the electric field
vector on the respective axes. These two equivalent lines
are coupled only through the “mutual permeability”
terms in the transverse Polder tensor itself,

M]=[;C_ﬁ]-

In both of these cases, and throughout all that follows,
it is assumed that the ferrite and conductors behave asa
lossless system, implying that the ferrite is not operated
in the vicinity of resonance.

To represent a lossless transmission-line system which
can be nonreciprocal, it is necessary to modify the prop-
erties of the reciprocal series inductance matrix L, the
reciprocal shunt capacity matrix C, or both. Carlin®?
has shown that the basic nonreciprocal circuit element
is the ideal gyrator, which has an impedance matrix of
the form

(22)

. 0 —J
ZGyrator = ]wN[ . :l (23)

7 0

where N is a real magnitude factor. Since the gyrator
is lossless and perfectly antireciprocal, it should be pos-
sible in principal to account for the behavior of a lossless
gyrotropic medium in a transmission-line ensemble by
incorporating “distributed gyrator” combinations into
the elemental line-length prototype. For a gyromag-
netic medium such as ferrite, the antireciprocal effect
is a function of magnetic field intensity (i.e., line cur-
rent) and results in induced electric field intensity (line
voltage). Consequently, it is appropriate to introduce
the distributed gyrators into the series impedance
branch only.

Even before introducing distributed gyrators, how-
ever, it is necessary to adjust the model of the simple,
uncoupled line somewhat in order to bring it into cor-
respondence with the first limiting case of (19). This
can be done readily by expressing the effective induct-
ance L, of the simple series branch as the parallel com-
bination of two branches of inductance 2L, and 2L_,
respectively. In terms of L, and L_, L, has the value

L.I_
Ly=2-—-"+t"_ (24)
L+ L_

¢ H, J. Carlin, “Principles of gyrator networks,” Proc. Symp. on
Mod. Advances in Microwave Tech., p. 175, November 1954.

5H, J. Carlin, “On the physical realizability of linear non-
reciprocal networks,” Proc. IRE, vol. 43, pp. 608—-616; May 1955.
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where, for a structure completely filled with ferrite, the
relation

L _ b (25)
L. p

is assumed. L, is thus seen to be a distributed inductance
computed in the usual way from the field distribution,
using u. as the medium permeability for those portions
of the structure containing ferrite.

Consider next a symmetrical two-line system which is
to be coupled only gyromagnetically. The series im-
pedance portion of the elemental prototype consists, in
the absence of coupling, of two sets of parallel branches
of 2L, and 2L_ distributed inductance. Two additional
parallel branches are now added to each line and coupled
through distributed gyrators 2N, and 2/N_. After some
algebra, this system can be reduced to an equivalent
series-form L matrix suitable for use in (17),

1 11
L= L, (26)
_—— 1 1
L2 Nz2| —j
Ne L,
where
NN
N, =2—— 27
Ny + N
Suppose now, that
L
Ny =+ (28)
a
L_
R p—— (29)
g

where ¢ is a coupling efficiency factor which varies from
zero {(no coupling) to unity (maximum coupling). Under
this assumption,

oo 2 el

o (Ly — L) 30)

Now, substituting for L, and N, in terms of ¢, L, and
L_ in (26),

. 2L.L_
(L + L) — (L — L)
[L+ + I — jo(Ly — L_)] -
j(T(L_;_ - Lr) L+ + L__

The following auxiliary parameters are now defined, for
reasons which will become obvious:

L,=3(Ly+ L)
L %(L-!- - L~)'

(32)
(33)

f
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————— ——

a SINGLE LINE

b. GYROMAGNETICALLY COUPLED SYMMETRIC PAIR

Fig. 2. Prototype sections for transmission lines in a

gyromagnetic medium.

Evidently, in a completely filled structure,

Le  Ly— L. —u ok
x L TR 6y
L, Lit L. prtu  u

Rewriting (31) in terms of L, and L, then gives the result

L ( L2 — L2 ) [L,, — jaLj

C\L: — 2L/ LjoL, L

Equation (35) is recognized immediately as having the
desired limiting behavior when the coupling efficiency

parameter ¢ takes on its extreme values. Thus, (31)
shows clearly that L—L,E for 0—0, while for ¢ =1, (35)

becomes
L_[h —ﬂﬂ
7L Ly,

which is merely an integrated form of the transverse
Polder tensor of (22).

Taking the shunt capacity matrix for this simple case
as simply a diagonal form,

(35)

(36)

C=CE (37)

it is possible to construct the K? matrix for general
values of o:

LA— L2 Ly, — joL.
K* = 2C <——Aﬁ> [ . ] (38)
L2 — 2L/} | joL, L,
The eigenvalues of this matrix are readily seen to be

L2-— L2 1
B = € —— = w?CL, (~—_—> (39)
L, F oL, 1F¢



24

2.2

ff \
/

Bp OR zp FOR

| B, orRzZ, FOR-{ \

~1Bp OR—jZp FOR{
-1Bn OR—yZy FOR=[__ |

)i

gs;?lm
N\
N

B OR zp FOR &

I~ A, OR z, For-{
08
|
‘\}\
[

0.g|
04
02

0O

C o0z 04 06 08 10 53 T4 6 )

t or-{

Fig. 3. Mode propagation factor and characteristic
impedance variation.

where {=0(L./L,). Defining 8,=w+/L.C, the two S
magnitudes given by (39) are

1
B = Be I——g (40)
Br=8 ! (41)
n e 1_I_§-

Once again, for the completely filled case, where {
=0a(k/u), it is relatively simple to show that 8,—8,
and B8,—B_ when o—1.

The eigenvectors associated with the 8, and 8, nor-
mal modes can be found using the basic relationships of

(12) and (13). Writing K? in terms of L, and ¢,

L [T1 =3
K=" [ % ] (42)
1= Ly 1
these become, for the voltage case,
1 1 =3 v 1 7
PN N
1—¢ Lj¢ 1 2] 1F¢ Lo

with the identical relation holding for the current
eigenvectors. Thus,
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1 |:1:| (44)

Vp = 1Ip = —= .

V2 Lj

and
-]
Vo = I, = —= .

V2L —j (45)

are found to be an appropriate set of eigenvectors for
any ¢, and the only set for ¢ >0.

Clearly, the eigenvectors given by (44) and (45) are
in harmony with the requirements of the limiting case
o=1. That is, the equal-amplitude, time-quadrature
normal modes prescribed previously are precisely in
agreement with the known circular polarization normal
modes for the infinite-medium Faraday rotator. For
intermediate values of ¢, the necessity for the particular
eigenvectors given is less apparent, but nonetheless
intuitively satisfying because of the establishment of
opposite senses of circularly polarized in the medium.

The final bit of information required in this simple
case is a knowledge of the characteristic impedances of
the two normal modes. Applying (17)

7 - { L. V1-¢ }[1 —j][} ~j§] [1} 16)
C 21 —=¢9 Y] 11 L
so that
1 L,
Vv1i—¢ C
similarly,
1 L,
2= e = (48)
V14t C

TaeE GENERAL Two-LINE SYsTEM

The encouraging results of the previous section sug-
gest that it may be of value to extend the model to
more general problems where symmetries do not exist
and where reciprocal coupling is permitted in addition
to purely antireciprocal coupling. Because of the large
number of independent parameters, it is difficult to
interpret such general systems for ensembles with a
substantial number of lines, to say nothing of the com-
putational labor involved in determining the eigen-
values and eigenvectors. As a result, consideration of
the general case will be limited to two-line situations.

Consider then a system of two lines in which one has
distributed self-inductances of 2e¢L, in parallel with
2aL_, and the other has (2/a)L. in parallel with
(2/a)L_. To allow for ordinary inductive coupling, dis-
tributed mutual inductances of 2pL . and 2pL_ will be
incorporated into the respective branches of each line.
Next, to reflect in some measure the fact that the abso-
lute values of Ly and L_ are likely to vary with the
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coupling factor p, normalized values L, and I_ will be

introduced, defined by
Ly = Liv1 =2
Lo =L.1T—p7.

(49)
(50)

Finally, distributed gyrator branches will be added in
parallel with the reciprocal branches in the manner of
the previous section; since L, and L_ are most indica-
tive of the integrated cross-sectional field, the gyrator
branches will be given magnitudes of 2(L,/¢) and
2(L_/o).

The “series impedance” portion of the elemental
length of each line thus consists of four parallel branches,
all of which must, of course, support the same voltage
AV. Designating the current in each branch by an arbi-
trary subscript, the appropriate matrix relations for the
branches are,

I:AVI:I F20l AZ Ta  p] [zu}
AV, V1 — p? 1 T1s
a

PRl AZ Ta 7] [121]
V1 — p? 1 I

2L, AZ T 0 1} [131}
B ag _—1 0 132

20l AZ [0 —17 [ Iy
S P | A A
g 1 0 142
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Fig. 4. Prototype section for a general transmission-line

pair in a gyromagnetic medium.

As in the previous section, the parameters L, and L,
are now introduced, and after some simplification,

-

L,
L=-— "
(1 =)vV1=p?
B
% [ . a P — 5V P] (54)
P+ V1 = p? 1/a
where
2L, L
e = :—+—7“ (55)
Li4-L_
and, as before, the parameter { is defined by
L. L, —L_
G . (56)

O ="
I, L,+1_
A shunt capacitance matrix with distributed coupling
is now defined in an analogous manner, i.e.,

¢ b —
The total currents ; and I can be related to the incre- C= e 1 . (57)
mental voltages AV; and AV, by inverting each of the V1I-yg —q i
preceding equations and summing the inverse matrices: b
Lo+ I . o
[11} —1/AZ — —p(Ly + L) + jo/1T — p2 (Ly — L)
= a
I Dwl L /T — p? .. o, L.
o — (Lo + L) = jov/T= p (L, — L) a(Ly + L)
AV,
2 o
AV,
By inverting this expression, the desired L matrix is
found to be
2L L /1 = p?
(z+ + Z—>2 - 02(z+ - f,_)’l
[ oL+ L) pLy+ L) —jo/1T — p? (Ly — L)
X1 . . N Li+ L (53)
V@* + L) 4 jo/T = 5 (L = D) —
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Now forming K?=w?LC,

wL.C

2

K2 =
1=V =0 — ) —

The eigenvalues of K? are then found to be,

WL

Vi G

Knowing the eigenvalues it is a straightforward but
tedious job to compute the eigenvectors and charac-
teristic impedance or admittance for any situation of

{EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES SEPTEMBER
[ —— ? R S —
b= gp TIEVI =P —egt s — iV =g
) (58)
—h by VI =P — —ah =T =
a ab
1 1 1 1 2
X{—waﬁ—Wiy{—anﬁ—@]—u—wu—wu—w} (59)
2 ab 2 ab
and since
2 T 2ep?
TR z1/1— s (64)
1— p 1 — p

interest. However, the complexity of the expressions and
the large number of independent parameters makes
interpretation of results difficult, so that the value of
exhibiting these general quantities is questionable. On
the other hand, there are a number of particular cases
which occur frequently in practice which are simpler,
have fewer independent parameters, and are more con-
ducive to gaining insight into the nature of the general
problem. Two such cases will be considered now, 1) the
geometrically symmetric case and 2) the quasi-TEM
case. For each of these cases, the propagation factor ex-
pressions will be examined and, for the latter case, the
eigenvectors and characteristic impedances will be cal-
culated.

1) The geometrically symmetric case: For this situation
the constants ¢ and b become unity. Then from (59)

oo WL
O N Y OI(D)
AA=gp) V({1 —gp)2— 1 — p)(A — (1 — 2)}.(60)

This expression is still rather involved, but can be
simplified when g and p do not differ greatly. Thus, take
g=(1-€)p, wheree is a number sufficiently small so that
€2 2e. Then

Zep?
— 0% A — (1 —
t—¢ =~ 1))( 1_1)2)
ep?
1—gp~(1—p)(1— :
g~ ( P)( 1—P2>

Substituting into (60) after cancelling a(1 —p?) factor,

(12
N (AT R

(61)

(62)

H-
=
>
|
<

a common factor of this sort can be removed, leaving
the familiar result

1F¢ 17
which is identical to the elementary case considered in
the previous section, implying that the propagation
factors are not only unchanged by reciprocal coupling
when ¢=p, but are also insensitive to small deviations
from this condition. Another case of interest is that in
which the reciprocal coupling is essentially of one sort,
ie., g=0 or p=0.

Taking ¢=0, (60) becomes

B’

A= vVi=p
Replacing p by ¢, an analogous relation is obtained for
p=0. Based on these results, a family of curves of 8/8.
has been plotted in Fig. 5.

2) The quasi-TEM case: Here, the characterizing con-
straints are ¢=p and a=1/b, so that (59) reduces
immediately to the fundamental relation,

B
1F+¢
Imposing these constraints leads also to a set of simpli-
fied eigenvectors appropriate to the quasi-TEM case:

(65)

8 {1+ Ve p20 — ). (66)

g =

(67)

i ae®/2
Vi &= —/—————= 68
' V2@ cos 8 [je—f"/2 :| (68)
1 ae= 12
Vo = —/——————— l: } (69)
v'2a cos @ —jerti?
1 12
' V2a cos 8 ,:jaef"/2 } (70)
1 2913
? +/2a cos 8 [: -—jae""/J (1)

where @ =sin"" p.
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Fig. 5. Influence of reciprocal coupling of only one type on

the propagation factor.

The results of (67), (70), and (72) now permit compu-
tation of the characteristic impedances Z; and Z, of the
two normal modes using (17). In view of the complexity
of the equations, the conclusions are almost startlingly
simple, viz:

Zy = Ml /E
V= ;4/ z (72)
and
1 I,
Z = — = __f .
sV e (73)

These expressions are precisely the same as were ob-
tained in the previous section for the elementary case
with no reciprocal coupling, the only difference being
the replacement of L, and C by the normalized quan-
tities L, and C.

The principal conclusion to be drawn from this ex-
amination of the quasi-TEM case is the rather interest-
ing and partially unanticipated way in which reciprocal
coupling influences the character of the normal modes.
First, the propagation factors for the two modes differ
only as a result of the gyromagnetic coupling, and are
not directly influenced by reciprocal coupling. Of course,
geometries favoring high reciprocal coupling are likely
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to imply small gyromagnetic coupling. Next, the char-
acteristic impedances of the two modes do not appear
to be affected by the extent to which reciprocal coupling
is present in a given configuration when normalized
values of L, and C are used. What does change, how-
ever, is the nature of the normal mode eigenvectors, In
general, the introduction of reciprocal coupling causes
the eigenvectors to depart from a “circularly polarized”
condition to one which can be considered as representa-
tive of an elliptical polarization. As the reciprocal
coupling factor increases, the elements of the eigen-
vectors tend to depart further from a quadrature phase
relationship and to approach more nearly an “in-phase”
state. The influence of this alteration of eigenvector
phase on the behavior of the system under given exci-
tation can, of course, be pronounced because the exci-
tation may resolve itself into rather different amplitudes
of the normal modes under different conditions of re-
ciprocal coupling.

SYMMETRICAL THREE-LINE SvysTEMS

Most ferrite applications that involve the use of
coupled transmission lines can be conveniently accom-
plished using only a line pair, and hence, may be suf-
ficiently well described by the previous analysis. One
important exception to this broad statement is the
coupled-line junction circulator which utilizes a sym-
metrical, quasi-TEM structure consisting of three trans-
mission lines embedded in a medium which is wholly or
partially ferrite. In this section, the general behavior of
such a transmission-line system will be investigated as
an extension of the two-line system, with a discussion
of the detailed circuit properties of the circulator net-
works reserved for treatment in a later section.

The basic approach to be used in analyzing the three-
line case is to consider it as a symmetrical array of
quasi-TEM coupled line pairs. That is, in the elemental
line length prototype, the series impedance of each line
is imagined to consist of two equal impedances in paral-
lel, with coupling to only one of the adjacent lines. This
coupling is related to the self-impedance terms in the
same way as for a two-line ensemble. The essential
nature of this approach is illustrated in Fig. 6. As can
readily be seen, the series impedance is composed of a
multiplicity of parallel branches, which must be brought
to an equivalent series-form L matrix. The first step in
the process is to write the relations between the incre-
mental voltage drops AV, AV, AV, and the branch
currents. These take the form of three sets of equations
each involving two of the incremental voltages. Each of
these twelve matrix equations must then be inverted to
get relationships which express the branch currents in
terms of the voltage increments. The branch currents
are then summed to get the total line currents [, I,, and
I; as functions of the incremental voltage drops.

Finally, this latter relation is inverted to obtain the
desired series-form expression for the AV’s as functions
of the line currents and the equivalent inductance
matrix is extracted. Carrying out these operations
vields the result
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Fig. 6. Analysis of the symmetrical three-line system.
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The new parameter £ is defined by the relation
V31— p?) <
el &) (75)
249

A capacitance matrix for the three-line ensembleis
now required. Fortunately, the capacitance matrices of
the constituent two-line arrays are already shunt-form
quantities, so that a three-line matrix can be obtained
by inspection as a direct sum of the simpler ones:

A 2 —p —p
C/2
C= 71/:;0 —p 2 —p (76)
- P 2

Now forming K?=w*LC, a number of common factors
cancel, leaving the simple result

ngwiec
Tgy=
x|-£4i 5 - LB

Because K*is Hermitian, the voltage and current eigen-
vectors will evidently coincide for each of the normal
modes. In addition, the fact that the structure being
treated has a rotational symmetry group of order three
allows the eigenvectors to be written down immediately
as the well known forms,

. 3 _ &
P—(2+P)?—2](1—P)\—/—§ V4 (2+1b)3+21(1 )
(2“;0)—(2-%1))?

& £ £ _ £
Ki 2+ 3 2j(1 — p) N C+p—+ j(1 = p) Nz

2 S—‘

V3

g & £
- (2 — — 21 — p) — 74
P(+P)3 i ( 1})\/3 (74)
gz
C+p—-QC+p) 3
Fo1)
=y = —1- 1 (78)
Vi =11 = \/g
L1
r1 7
[ ! j2w /3 (79)
Ve = I = —= er=r
\/3 _e—~]21r/3_
-1
. I 2 /3 (80)
Vs = Iy = —= g Iemie
V3 | eo2mi3 J

Then the eigenvalues 82 can be found using these eigen-
vectors in conjunction with (12) and (77) to give the
interesting results,

B = VLl =3, (81)
Be

S 82

B2 Vi (82)
8.

- 83

%= AT (83)

The propagation factors predicted by (81)—(83) are
intuitively satisfying in a number of ways. The first
eigenvector, for example, corresponds to a normal mode
which propagates along the structure with in-phase
voltages and currents at every cross-sectional plane.
The field conditions existing in the transverse plane are
accordingly similar to those of a single line and the
propagation factor for this mode should and does cor-
respond to the single-line case. Furthermore, the
parameter £ is seen to be analogous to the parameter {
in the two-line case, with 8; and 8; tending to 8, and 8_
as £ tends to k/u. The particular way in which £ and ¢
are related is also worthy of some comment. In discus-
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sing the quasi-TEM two-line system, it was noted that
the gyromagnetic coupling parameter { did not depend
directly on the extent of reciprocal coupling, but rather Lo
that the influence of reciprocal coupling was most clearly ' —I
reflected in a shift of the eigenvector elements away
from a time-quadrature condition toward an in-phase \
state. No such dependence of the eigenvectors of the
symmetrical three-line system is possible, however, be-
cause the eigenvectors are, in fact, prescribed on the
basis of symmetry considerations alone. The influence
of reciprocal coupling is felt directly as a reduction of the
effective gyromagnetic coupling factor £ for any particu-
lar value of {. The dependence of the £/{ ratio on the
reciprocal coupling factor p has been plotted in Fig. 7.
The normalization factor 4/3/2 which appears in the
£/¢ ratio term is consistent with the fact that the eigen-
vector currents occur at a 120° phase relation rather
than at the quadrature phase relation leading to maxi-
mum coupling. The effective coupling parameter £ is the
important quantity, of course, and depends on the ex-
tent of circular polarization generated by the super-
position of the magnetic fields produced by the currents ok = L = ok -
in each of the three lines. RECIPROCAL COUPLING FACTOR

Having dete.rm'm'ed the‘ eigenvectors and eigenvalues Fig. 7. Reduction of effective gyromagnetic coupling as a
of the K? matrix, it is possible to calculate the character- result of reciprocal coupling.
istic immitances for the three normal modes. Because
the L and C matrices possess the same basic symmetry
properties as the K2 matrix, the eigenvectors of voltage

V3 o

¢

[}

0.4] \

NORMALIZED EFFECTIVE GYROMAGNETIC COUPLIN

3.8
and current are also eigenvectors of L and C, and the /
Hermitian forms i'Li and v!Cv of (17) and (18) in fact 18
merely generate the eigenvalues of these matrices. /
Since the C matrix is the simpler of the two, its eigen- 34
values will be calculated ; they are /
3.2
. /=9
a=C 4/ ~—2 (84)
149 3
CQ+p) V3§ of

™~
)
~—

2 = = == - .. 85
Cs = C3 Vs C2 : (85)

The characteristic impedances are then given by

1+ i, 1
le_ﬁ’ =1/_+_2’j o (86)
we1 1—9p C v
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P \/3§1/_~‘
P e A — E werv/l — £ (87) /

53 o /
Zy=—-= = 88
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where v, is the phase velocity of propagation of the £

NORMALIZED IMPEDANCE Z,./ &/t
N
o

>

3 -l . . 1
mode. Clearly, Z'~/C/L, is a function only of the 0 2 RECIPRACAL COUPLING FACTOR p 0 To
paraMIIleEer b, while tAheAcorrespondmg normalized values Fig. 8. In-phase tpode cbaracteristic _impedance variation
Zov/C/L, and ZyA/C/L, depend on both p and £ The with reciprocal coupling.

relationship of (86) is accordingly plotted as a single
curve in Fig. 8, with those of (87) and (88) taking the
form of curves exactly like those of Fig. 3, except that
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Fig. 9. Relation of the reciprocal coupling factor to the capacitive
eigenvalue ratio for a TEM symmetrical three-line.

the abscissa is in units of £ and the ordinate values are
multiplied by the p-dependent factor given in Fig. 7.
Finally, the capacitive eigenvalue ratio ¢ /¢y (which is
easily measured) has been related to the reciprocal
coupling factor p in Fig. 9.

CONCLUSIONS

The goal which provided the original impetus to this
paper was that of developing a network-theoretical
model which was reasonably simple, yet complete
enough to describe the sort of behavior observed and
reported for transmission-line systems in a ferrite
medium. The particular distributed-gyrator combina-
tion that has been presented previously was chosen
after an examination of several configurations showed it
to be best able to describe known limiting cases of ferrite
behavior. Like most other network models of physical
situations, it is acceptable if it is sufficiently plausible,
and useful if it is sufficiently accurate. Assuming plausi-
bility to be reasonably well established, the chief dif-
ficulty with this model is likely to be the extent to which
accurate computation of the gyromagnetic coupling
factors can be carried out. Perhaps the most expedient
way of determining the coupling factors for any given
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geometry will be actually to build a structure and mea-
sure its behavior, using the model as a guide to under-
standing measured results. While this approach may not
be very satisfying to the analytically minded, it is ac-
cepted practice in large segments of the engineering
world.

In common with other network models, certain limi-
tations exist on the applicability of the model which has
been developed here. One of the obvious limitations
arises out of the restriction of the analysis to lossless
lines. Practical ferrites, like practical passive reciprocal
networks, always exhibit losses to a greater or lesser de-
gree. Ferrite losses are especially troublesome when the
frequency of excitation can couple energy to domains at
gyromagnetic resonance. This situation can exist when
the ferrite is biased to resonance by the applied mag-
netic field, when the ferrite is unsaturated at frequencies
below wy =v47 M,, or when the applied field is low and
a nonlinear high-power loss threshold is exceeded at
frequencies below 2wz. These high-loss regions are un-
desirable for the sort of conditions where the coupled-
line model would apply, and hence must be avoided.
Under other conditions, the ferrite losses, while higher
than an unfilled line, are generally low enough so that
the main effect is that of a slight attenuation of the
modes in propagation along the structure. This attenua-
tion, however, is likely to be substantially greater for
the mode which couples to the spin system of the ferrite
than for the oppositely rotating mode.

Another potential source of difficulty in applying the
simple model is the existence, in any given structure, of
higher-order modes. If such modes can propagate, the
transmission-line ensemble is, in effect, increased in
complexity by their number. However, even though a
higher-order mode is in a cutoff state, its presence as an
evanescent mode of appreciable amplitude may cause
substantial modification of the frequency dependence of
the ensemble. Such behavior is most likely when the
cross-sectional dimensions of the transmission structure
begin to be an appreciable fraction of a wavelength
(e.g., a half-wavelength) at the operating frequency.
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