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Abstract—Reciprocal

Network Model for Transmission Lines

with Gyromagnetic Coupling

CHARLES R. BOYD, JR., SENTOR MEMBER, IEEE

ensembles of coupled transmission lines

have been studied-for many years using m~trix techniques. In this
paper, the lossless multiconductor transmission line model is ex-
tended to permit a description of gyromagnetic coupling effects. The
novel ingredient which allows such an extension is the incorporation
of distributed gyrators into the elemental line-length prototype. These
gyrators provide antireciprocal coupling between the ensemble con-

ductors. The amount of coupling is expressed by a geometry-depen-

dent factor which in effect measures a given structure relative to an
ideal Faraday rotator in the same medium. The gyromagnetic coupling

factor, in conjunction with the derived expressions for mode propaga-

tion factors and characteristic impedances, provides a means of
interpolating between the known limits of no coupling and ideal
Faraday rotation. General relations are derived for two-line systems

and for symmetrical, quasi-TEM three-line systems.

INTRODUCTION

T

HE TRANSMISSION-LINE model is one of the

oldest and most useful tools of the designer of

microwave networks. While it may seem a crude

approximation to the intricacies of the electromagnetic

field distribution in any given problem situation, its

very simplicity allows a keener insight into the gross

behavior of such networks. Furthermore, microwave

network problems are usually concerned only with the

behavior of sets of scattering parameters, and not with

the field distributions per se. Therefore, it is frequently

most expedient to formulate the scattering properties

of a junction as a more or less complicated transmission-

line problem, solving for the various propagation factors

and characteristic impedances by one of the well-known

integral equation methods leading to iterative, pertur-

bational, or variational formulas.

The appearance of microwave ferrites on the scene in

recent years has, however, led to a rather awkward

situation. “Exact” methods (i.e., boundary-value prob-

lem formulations) of solving propagation problems in

magnetized ferrites have been of value in a number of

important but limited cases. These have usually

amounted to determining the propagation factor and

possibly also the characteristic impedance of single,

isolated lines. As ferrite component technology has

matured, circuits have been built using two or more

coupled lines in a medium partially or completely filled

with ferrite to obtain nonreciprocal effects. Analysis of
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this type of configuration has so far been restricted to

special cases, such as those treated by Boyet and Seidell

and by Jones, Matthaei, and Cohn, z using perturba-

tional methods.

The present paper is the result of an attempt to gen-

eralize the matrix transmission-line problem in a way

that allows for gyromagnetic coupling between con-

ductors in an ensemble. The model is essentially an

heuristic one, chosen solely because it appears to be the

simplest such model which fits the limiting cases prop-

erly. The novel ingredient which allows nonreciprocal

coupling to occur is the introduction of distributed gy-

rators into the elemental prototype of transmission-line

length. Chief emphasis is placed on an exploration of the

characteristics of the two-line system with gyromagnetic

coupling only and with mixed reciprocal and nonrecip-

rocal coupling. Because the symmetrical three-line en-

semble is of interest in circulator applications, a

discussion of its characteristics is included.

ESSENTIALS OF THE h)IATRIX TRANSMISSION

LINE PROBLEM

Since the nonreciprocal model to be discussed

short

pres-

ently is a generalization of the conventional matrix

transmission-line problem, it is appropriate to review

here briefly the nature of this problem. For the simplest

case of a single, isolated, uniform transmission line, it is

customary to define an elemental prototype section of

length dz containing a distributed shunt admittance and

a distributed excitation. Analysis of this prototype sec-

tion leads to the familiar differential equations,

V’ = – @L1 (1)

I’ = – jmCV. (2)

Equations (1) and (2) are then combined to give second-

order differential equations in V and 1 of the form

v“ + ~z~ = o (3)

1“ + kZI = O (4)

where k2 = W2LC. Assuming solutions of the form V
= ?e~fl” and I= ?e.@ Ieacls to the characteristic equation

k2– @2:() (5)

1 H. Boyet and H. Seidelj “Analysis of nonreciprocal effects in an
n-wire ferrite-loaded transmission line, ” Proc. IRE, vol. 45, pp. 49 l–
495, April 1957.

2 E. M. T. Jones, G. L. Matthaei, and S. B. Cohn, “A nonrecipro.
cal, TEM-mode structure for wide-band gyrator and isolator appli-
cations, ” IRE Trans. on Microwave Theory and Techniques, vol.
MTT-7, pp. 453–460; October 19.59.

652



BOYD: TRANSMISSION LINES WITH GYROMAGNETIC COUPLING
653

I L I

I J
I

-

t—, z —--+

o ELEMENTARY LINE

D TRANSMISS?(JIU .Lt NE ENSEMBLE (4-LINE CASE sHoWNI

Fig. 1. Reciprocal transmission-line prototype sections.

\rith solutions P = ~ k. Using this result in conjunction

~vith either (1) or (2) allows the ratio of V to 1 to be pre-

scribed for any root of (5) in the form of a ‘[characteristic

impedance, ”

(6)

Applying the results of (5) and (6) to the assumed form

of solutions for V and 1, plus load and generator end

conditions then prescribes the total z dependence of the

phasors ~ and ~.

All of the previous information is, of course, com-

pletely familiar to engineering students at the under-

graduate level. What is perhaps not so familiar is the

generalization of this problem to ensembles of lossless,

uniform transmission lines. In this latter case, the ordi-

nary differential equation is replaced by a system of dif-

ferential equations, and the characteristic (5) goes over

into a matrix eigenvalue equation. As before, the start-

ing point is an elemental section of line length dz, having

series distributed self and mutual inductances, and

shunt distributed capacities to ground and between

lines. Equations (1) and (2) then become systems of

equations, which can be written in matrix notation

V’ = – juLI (7)

I’ = – juCV. (s)

Here V and 1 are column vectors of voltage and current,

with each member of the columns representing the volt-

age (with respect to a reference ground) and current on

a particular line. Similarly V’ and 1’ are columns of

d ~7/dz and dl/dz for the same lines, respectively. The

quantities L and C are square matrices of generalized

series inductance and shunt capacity, derived from the

elemental prototype section of line length. Since the pro-

totype is that of Iossless network, it follows that L and

C are nonsingular Hermitian matrices, becoming real

and symmetric for the reciprocal case. Equations (7)

and (8) are now combined in a manner formally identi-

cal with the combining of (1) and (2) to give the matrix

differential equations

v“ + ~zv = () (9)

I“ + @l = O (lo)

with K2 = W2LC, and the dagger indicating Herrnitian

conjugation of the matrix. Assuming solutions of the

form V= fie@ and ~ = Ie@’ then leads to the matrix

eigenvalue equations

(W – @2E)ti = (K’t – ,62E)t = O (11)

~vhere E is the unit matrix. The quantities ~z are seen

to be eigenvalues of the matrices K~ or KV, the results

being identical for either choice. In general, the number

of distinct values of @~ may be as large as the rank of

K2, but it frequently happens that degeneracies occur.

Finally, since L and C are both Herrnitiam, the VdUeS

of /Y must be real.

Nondegenerate values of ~’ are, of course, associated

~l,ith particular modes of voltage-current distribution

which propagate as traveling \vaves with a unicluely

defined propagation factor. These modal distributions

are given by the eigenvectors v, of voltage and i, of

current, associated with the r’th value of /?z, and defined

by

WV, = &%7L (12)

and

~ti; = ~<zi,~ (13)

The eigenvectors v, and i; are chosen normalized so that

both vectors have equivalent length, satisfying a mode

power orthogonality relationship of the form

i~tv~ = 6,~ (14)

where 6 is the Kronecker delta. The mode voltage and

current vectors are, of course, multiplied by complex

amplitude coefficients U~ and J, to be determined from

end conditions. The amplitude of the current vector is

related to that of the voltage vector through a mode

characteristic impedance Z, in a manner analogoua to

the single-line case,

Lli = Z,J%. (15)

This impedance can be determined (along with v, if de-

sired) by substituting i, and /3, into a form of (1 7),

(16)

Because J, has been taken as unity on the right-hand

side of the previous expression, it follows from (15) that
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U;= Zi on the left-hand side. Then multiplying by i~t

and applying (14)

Of course, it is possible to work through (8) and obtain

the reciprocal of Zi, the mode characteristic admittance

Yi,

(18)

Note that since i~tLi~ and v,tCvi are Hermitian forms

and hence equal to real numbers, the characteristic

immitances Zi and Y~ are either pure real or pure imag-

inary, depending on the nature of fli.

When degenerate values of /32 occur, a certain flexi-

bility will exist in the choice of the eigenvectors. How-

ever, care must be exercised to ensure that mode orthog-

onality in the power sense is obtained. Thus, an accept-

able method of generating n eigenvectors of current and

voltage for an n-fold degeneracy of @2 is to select one

voltage or current vector arbitrarily and calculate its

partner and characteristic impedance using (17) or (18)

as appropriate. A second eigenvector of the original type

is then constructed to be orthogonal to the first partner,

and the process repeated until n eigenvectors of both

types and n characteristic impedances are obtained.

ESSENTIAL FORM OF THE MODEL

Transmission lines coupled in a magnetized ferrite

medium have been observed to behave in a nonrecipro-

cal manner. Therefore, it is clear that the strictly recip-

rocal case must be modified to agree with the more gen-

eral behavior. Not just any modification will do, of

course; the resulting model must have characteristics

which are permissible on the basis of network theory

and which are in accord with the field theoretical results

for propagation in magnetized ferrites in certain limiting

cases. There are two such limiting cases of importance

here, 1), the TEM-limit case in which no Faraday rota-

tion is permitted and 2) the TEM case in which no con-

straint is imposed on Faraday rotation. For the first

situation, Suhl and Walkers have shown that the

medium takes on an effective permeability p, given by

P, = 2 ~+p– . (19)
p+ + P–

Here p+ and p_ are eigenvalues of the transverse Polder

tensor for a longitudinally magnetized infinite ferrite

medium:

LL+=LL -I-K (20)

,U-= ~-K. (21)

a H. Suhl and L. R. Walker, “Topics in guided wave propagation
through gyromagnetic media, ” Bell Telephone System Monograph
2322, pp. 166-173, 1954.

The second case is the classic situation in which a

linearly polarized plane wave propagates in a longi-

tudinally magnetized infinite ferrite medium. Under

these circumstances it is appropriate to choose two

orthogonal axes in the transverse plane and define the

system as a pair of transmission lines whose excitations

are proportional to the projections of the electric field

vector on the respective axes. These two equivalent lines

are coupled only through the ‘(mutual permeability”

terms in the transverse Polder tensor itself,

(22)

In both of these cases, and throughout all that follows,

it is assumed that the ferrite and conductors behave as a

lossless system, implying that the ferrite is not operated

in the vicinity of resonance.

To represent a lossless transmission-line system which

can be nonreciprocal, it is necessary to modify the prop-

erties of the reciprocal series inductance matrix L, the

reciprocal shunt capacity matrix C, or both. Carlin~,5

has shown that the basic nonreciprocal circuit element

is the ideal gyrator, which has an impedance matrix of

the form

o –j
ZGmator = ~wN

[1~o

(23)

where N is a real magnitude factor. Since the gyrator

is lossless and perfectly antireciprocal, it should be pos-

sible in principal to account for the behavior of a lossless

gyrotropic medium in a transmission-line ensemble by

incorporating ‘{distributed gyrator” combinations into

the elemental line-length prototype. For a gyromag-

netic medium such as ferrite, the antireciprocal effect

is a function of magnetic field intensity (i. e., line cur-

rent) and results in induced electric field intensity (line

voltage). Consequently, it is appropriate to introduce

the distributed gyrators into the series impedance

branch only.

Even before introducing distributed gyrators, how-

ever, it is necessary to adjust the model of the simple,

uncoupled line somewhat in order to bring it into cor-

respondence with the first limiting case of (19). This

can be done readily by expressing the effective induct-

ance L. of the simple series branch as the parallel com-

bination of two branches of inductance 2Lh and 2L_,

respectively. In terms of L+ and L_, L8 has the value

LqL-
Le=2

L+ + L-
(24)

4 H, J. Carlin, “Principles of gyrator networks, ” PYOC. Symp. on
Mod. Advances in Microwave Tech., p. 175, November 1954.

6 H. J. Carlin, “On the physical realizability of linear non.
reciprocal networks, ” Proc. IRE, vol. 43, pp. 608–616; May 195.5.
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where, for a structure completely filled with ferrite, the

relation

L+ ,U+

L-=;
(25)

is assumed. Lt is thus seen to be a distributed inductance

computed in the usual way from the field distribution,

using p, as the medium permeability for those portions

of the structure containing ferrite.

Consider next a symmetrical two-line system which is

to be coupled only gyromagnetically. The series im-

pedance portion of the elemental prototype consists, in

the absence of coupling, of two sets of parallel branches

of 2L~ and 2L– distributed inductance, Two additional

parallel branches are now added to each line and coupled

through distributed gyrators 2N~ and 2N_. After some

algebra, this system can be reduced to an equivalent

series-form L matrix suitable for use in (17),

4

L= ‘
11

—— —

where

N+N_
.Ve = 2

N+ + .v_

Suppose now, that

L+
N+ = —

u

.v_ = – ~:
u

(26)

(27)

(28)

(29)

where c is a coupling efficiency factor which varies from

zero (no coupling) to unity (maximum coupling), Under

this assumption,

LJ
A,. = ~

CT (L+ – L-) “
(30)

Now,

L_ in

substituting for L. and N. in terms of IS, L+ and

(26),

2L+L–
L=—

(L+ + L.)’ – U’(L+ – L_)’

[

L+ + L_
x

– jJ(L+ -- L_) 1L~+L. “
(31)

.~CT(L+– L_)

The following auxiliary parameters are now defined, for

reasons which will become obvious:

Lp = *(L+ + L-) (32)

Lx = ;(L+ – L_). (33)

II
IL

I

p—.--.-d, ------
. SINGLE LINE

b. GYROMAGNETICALLY COWLED SYMMETRIC PAIR

Fig. 2. Prototype sections for transmission lines in a
gyromagnetic medium.

Evidently, in a completely filled structure,

LK L+ – L- _/J+ -lJ– =,:- . (34)
~= LG+L-– N~+p- p

Rewriting (31) in terms of L, and Lx then gives the result

‘= ($’’--:&) [:L,‘Y] ‘3’)

Equation (35) is recognized immediately as havin~ the

desired limiting behavior when the coupling efficiency

parameter IJ takes on its extreme values. Thus, (31)

shows clearly that L+L, E for a40, while for u = 1, (35)

becomes

[

Lp
L=

– jL,

jL. Lfl 1
(36)

which is merely an integrated form of the transverse

Polder tensor of (22).

Taking the shunt capacity matrix for this simple case

as simply a diagonal form,

C=CE (37)

it is possible to construct the K~ matrix for gen(eral

values of u:

‘Z=”’c(i?--a%)[:L.““3 ’38)
The eigenvalues of this matrix are readily seen to be
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Fig. 3. Mode propagation factor and characteristic
impedance variation.

where ~ = a(LJLJ. Defining ~e = a ~L,C, the two ~

magnitudes given by (39) are

d 1
&=/3e —

l–~ (40)

(41)

Once again, for the completely filled case, where ~

= u(~/p), it is relatively simple to show that PP+3+

and @n-+@. when u-l.

The eigenvectors associated with the ~, and flm nor-

mal modes can be found using the basic relationships of

(12) and (13). Writing K’ in terms of L. and ~,

‘2=s [;, “:1
(42)

these become, for the voltage case,

with the identical relation holding for the current

eigenvectors. Thus,

11

[1“=’”=s j

and

11

[1‘“= ’’L=7Z –j

SEPTEMBER

(44)

(45)

are found to be an appropriate set of eigenvectors for

any u, and the only set for u >0.

Clearly, the eigenvectors given by (44) and (45) are

in harmony with the requirements of the limiting case

u = 1. That is, the equal-amplitude, time-quadrature

normal modes prescribed previously are precisely in

agreement with the known circular polarization normal

modes for the infinite-medium Faraday rotator. For

intermediate values of u, the necessity for the particular

eigenvectors given is less apparent, but nonetheless

intuitively satisfying because of the establishment of

opposite senses of circularly polarized in the medium.

The final bit of information required in this simple

case is a knowledge of the characteristic impedances of

the two normal modes. Applying (17)

so that

similarly.

(47)

(48)

THE GENERAL TWO-LINE SYSTEM

The encouraging results of the previous section sug-

gest that it may be of value to extend the model to

more general problems where symmetries do not exist

and where reciprocal coupling is permitted in addition

to purely antireciprocal coupling. Because of the large

number of independent parameters, it is difficult to

interpret such general systems for ensembles with a

substantial number of lines, to say nothing of the com-

putational labor involved in determining the eigen-

values and eigenvectors. As a result, consideration of

the general case will be limited to two-line situations.

Consider then a system of two lines in which one has

distributed self-inductances of 2aL+ in parallel with

2aL_, and the other has (2/a)L+ in parallel with

(2/a) L_. To allow for ordinary inductive coupling, dis-

tributed mutual inductances of 2pL~ and 2PL_ will be

incorporated into the respective branches of each line.

NText, to reflect in some measure the fact that the abso-

lute values of L+ and L_ are likely to vary with the
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coupling factor ~, normalized values ~+ and ~_ will be

introduced, defined by

1+ = I,+til – @ (49)

~- = L.#1 – Pz . (50)

Finally, distributed gyrator branches will be acfded in

parallel with the reciprocal branches in the manner of

the previous section; since ~~ and ~_ are most indica-

tive of the integrated cross-sectional field, the gyrator

branches will be given lmagnitudes of 2 (~+/u) and

2 (i_/u) .

The “series impedance” portion of the elemental

GYROMAGNETIC COUPLING

2.3L+

Fig. 4. Prototype section for a general transmission-line
pair in a gyromagnetic medium.
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length of each line thus consists of four parallel branches, As in the previous section, the parameters L, and Lx
all of which must, of course, support the same voltage

A V. Designating the current in each branch by an arbi-
are now introduced, and after some simplification,

#

trary subscript, the appropriate matrix relations for the

branches are,

lJe
L=

(1 – f’)~1 – p’

AV1

[1 [][1

j2c&AZ a p Iu
— .—

AV2 dl – p’ 112

P+

[][1

j2u~-AZ a P 121
—

<1 – p2 122

P+

The total currents 11 and 12 can be related to the incre-

mental voltages A V1 and A V2 by inverting each of the

preceding equations and summing the inverse matrices:

——

[

a P – Nv’1 ‘“ P’

x p+j<dl–p’ l/a 1
(54)

where

2z+L_
1. = (55)

15+i-L-

and, as before, the parameter ~ is defined by
. . .

i-= ’s$=g ~-:-” (56)

fi L+ + L-

(51)
A shunt capacitance matrix with distributed coupling

is now defined in an analogous manner, i.e.,

II

[1

– l/AZ

[

L+ + i_

— a
It – 3’2J+Z-41 – p2

–p(z+ + 2_) – judl – p (L+

By inverting this expression, the desired L matrix is

found to be

2L+L-/41 – p’
L=

(2+ + t-)’ – (#(j+ – 1-)’

r
a(t+ + Z–)

xl

1p(t+ + 2-) +j.1/’l – p (1+ – 2)

e b
c= —

[1

–~
<1 – q’

(57)
1“

–q ;

–p(t+ + t-) +ju<l – p’ (t+ – L)
1

I

i-) a(t+ + 2–) J

(52)

f(~+ + i-) – jr<l—– p’ (~+ – L-)

L+ -t L_

1

(53)

a
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Now forming K2 = 0J2L.C,

.

The eigenvalues of K2 are then found to be,

w~. w
‘2=(1– (’)<(1 – p’)(1 – g’)

—aq+~—j+-~l-pz

1
— – qp – jqcdl – P2
ab 1

x{+(ab++)-q’i/[+(ab+:)-qpI-(1-p2)(1-q2)(1-’2)}
Knowing the eigenvalues it is a straightforward but

tedious job to compute the eigenvectors and charac-

teristic impedance or admittance for any situation of

interest. However, the complexity of the expressions and

the large number of independent parameters makes

interpretation of results difficult, so that the value of

exhibiting these general quantities is questionable. On

the other hand, there are a number of particular cases

which occur frequently in practice which are simpler,

have fewer independent parameters, and are more con-

ducive to gaining insight into the nature of the general

problem. Two such cases will be considered now, 1) the

geometrically symmetric case and 2) the quasi-TEM

case. For each of these cases, the propagation factor ex-

pressions will be examined and, for the latter case, the

eigenvectors and characteristic impedances will be cal-

culated.

1) The geomet~ically symmetric case: For this situation

the constants a and b become unity. Then from (59)

(.J-zec
p, =

(1 – f’)v(l – p’)(1 – q’)

{(1 -qP) + v’(1 - @)2 - (1 - P’)(1 - q’)(1 - f2)}.(60)

This expression is still rather involved, but can be

simplified when q and p do not differ greatly. Thus, take

q =(1 +c)P, where e k a number sufficiently small so that

e2<<2e. Then

l–q2=

)

(61)~1–p2)(l–&

( i+%) ’62)
l–qp=(l–p2) l–

Substituting into (60) after canceling a(l – jz) factor,

B2= ;“ ‘.,2 {(1-i%)
(1–f’) l–———

l–p2

i /(1-%)’-0-+%l-? ’63)

\

(58)

(59)

and since

~P2 d~ _ 2ep2
l–—

l–p’= l–pz
(64)

a common factor of this sort can be removed, leaving

the falmiliar result

U,z.e Pe2
B’”— —IT{=

l~f
(65)

which is identical to the elementary case considered in

the previous section, implying that the propagation

factors are not only unchanged by reciprocal coupling

when q = P, but are also insensitive to small deviations

from this condition. Another case of interest is that in

which the reciprocal coupling is essentially of one sort,

i.e., q=O orp=O.

Taking q = O, (60) becomes

Be’
—{1 * dfz+pz(l - ~z)}. (66)

‘2 = (1 – f’)v’l – pz

Replacing P by q, an analogous relation is obtained for

P =0. Based on these results, a family of curves of P/P,
has been plotted in Fig. 5.

2) The quasi- TEi!J case: Here, the characterizing con-

straints are q =9 and a = l/b, so that (59) reduces

immediately to the fundamental relation,

(67)

Imposing these constraints leads also to a set of simpli-

fied eigenvectors appropriate to the quasi-TEM case:

1 [;:::21 ’68)“ = <2a cos O

1 [:;: 1 ’69)‘2 = ~2a cos 0

1 [2:21 ’70)11 = d2a cos 0

1 [:~ae-ozl ’71)12 = ~2a cos O

. . where (j = sin–l p.
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Fig. 5. Influence of reciprocal coupling of only one type on
the propagation factor.

The results of (67), (70), and (72) now permit compu-

tation of the characteristic impedances ZI and ZZ of the

two normal modes using (1 7), In view of the complexity

of the equations, the conclusions are almost startlingly

simple, viz:

and

(72)

(73)

These expressions are precisely the same as were ob-

tained in the previous section for the elementary case

with no reciprocal coupling, the only difference being

the replacement of L, and C by the n“orrnalized quan-

tities ~. and ~.

The principal conclusion to be drawn from this ex-

amination of the quasi-TEM case is the rather interest-

ing and partially unanticipated way in which reciprocal

coupling influences the character of the normal modes.

First, the propagation factors for the two modes differ

only as a result of the gyromagnetic coupling, and are

not directly influenced by reciprocal coupling. Of course,

geometries favoring high reciprocal coupling are likely

to imply small gyromagnetic coupling. liext, the cltar-

acteristic impedances of the two modes do not appear

to be affected by the extent to which reciprocal coupling

is present in a given configuration when normalized

values of La and C are used. What does change, how-

ever, is the nature of the normal mode eigenvectors, In

general, the introduction of reciprocal coupling causes

the eigenvectors to depart from a “circularly polarized”

condition to one which can be considered as representa-

tive of an elliptical polarization. .4s the reciprocal

coupling factor increases, the elements of the eigen-

vectors tend to depart further from a quadrature phase

relationship and to approach more nearly an ‘[in-phase”

state. The influence of this alteration of eigenvec tor

phase on the behavior of the system under given elici-

tation can, of course, be pronounced because the exci-

tation may resolve itself into rather different amplitudes

of the normal modes under different conditions of re-

ciprocal coupling.

SYMMETRICAL THREE-LINE SYSTEMS

Most ferrite applications that involve the use of

coupled transmission lines can be conveniently accc,m -

plished using only a line pair, and hence, may be suf-

ficiently well described by the previous analysis. One

important exception to this broad statement is the

coupled-line junction circulator which utilizes a sym-

metrical, quasi-TEM structure consisting c~f three trans-

mission lines embedded in a medium which is wholly or

partially ferrite. In this section, the generad behavior of

such a transmission-line system will be investigated as

an extension of the two-line system, with a discussion

of the detailed circuit properties of the circulator r}et-

works reserved for treatment in a later section.

The basic approach to be used in analyzing the three-

line case is to consider it as a symmetrical array of

quasi-TEM coupled line pairs. That is, in the elemental

line length prototype, the series impedance of each line

is imagined to consist of two equal impedances in paral-

lel, with coupling to only one of the adjacent lines. This

coupling is related to the self-impedance terms in the

same way as for a two-line ensemble. The essential

nature of this approach is illustrated in Fig. 6. As can

readily be seen, the series impedance is cc)mposed o,f a

multiplicity of parallel branches, which must be brought

to an equivalent series-form L matrix. The first step in

the process is to write the relations between the incre-

mental voltage drops A VI, A V2, A V3 and the branch

currents. These take the form of three sets of equaticms

each involving two of the incremental voltages. Each of

these twelve matrix equations must then be inverted to

get relationships which express the branch cm-rents in

terms of the voltage increments. The branch currents

are then summed to get the total line currents 11, 12, and

13 as functions of the incremental voltage drops.

Finally, this latter relation is inverted to obtain the

desired series-form expression for the A V’s as functions

of the line currents and the equivalent inductance

matrix is extracted. Carrying out these operations

yields the result
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Fig. 6. Analysis of the symmetrical three-line system.

2,41 – p’
L=

(1 – P)(2+P)(1 – t’)

[

(2–p)–(2+p):

1

$–(2+P); –2&P)~ ‘P-(2 +#); +2j(l -@$

x fi-(2+t); +2j(l -t)+ (2–#)–(2+f); P–(2+P); –2j(l– P)$ (74)

I I

1IH2+P):-23U-P)$ P–(2+fo:+Mb5)+ (2+ P)–(2+P):
1

The new parameter ~ is defined by the relation

(75)

A capacitance matrix for the three-line ensemble is

now required. Fortunately, the capacitance matrices of

the constituent two-line arrays are already shunt-form

quantities, so that a three-line matrix can be obtained

by inspection as a direct sum of the simpler ones:

[

2 –p
e/2

–PI

c= —
<1 – p’ ‘p

–P

Now forming K2 =COZLC, a number

cancel, leaving the simple result

12–p. (76)

P~

of common factors

(77)

Because ~ is Herrnitian, the voltage and current eigen-

vectors will evidently coincide for each of the normal

modes. In addition, the fact that the structure being

treated has a rotational symmetry group of order three

allows the eigenvectors to be written down immediately

as the well known forms,

[1
1

1
1

‘l=l’=Z
1

(78)

1
1

“=i ’=z
[1

#w/3 (79)

~–j2T/3

Then the eigenvalues /32 can be found using these eigen-

vectors in conjunction with (12) and (77) to give the

interesting results,

B, = @dL,c = D, (81)

The propagation factors predicted by (8 1)–(83) are

intuitively satisfying in a number of ways. The first

eigenvector, for example, corresponds to a normal mode

which propagates along the structure with in-phase

voltages and currents at every cross-sectional plane,

The field conditions existing in the transverse plane are

accordingly similar to those of a single line and the

propagation factor for this mode should and does cor-

respond to the single-line case. Furthermore, the

parameter $ is seen to be analogous to the parameter (

in the two-line case, with & and & tending to (3+ and ~_

as ~ tends to K/p. The particular way in which ~ and {

are related is also worthy of some comment. In discus-
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sing the quasi-TEM two-line system, it was noted that

the gyromagnetic coupling parameter { did not depend

directly on the extent of reciprocal coupling, but rather

that the influence of reciprocal coupling was most clearly

reflected in a shift of the eigenvector elements away

from a time-quadrature condition toward an in-phase

state. No such dependence of the eigenvectors of the

symmetrical three-line system is possible, however, be-

cause the eigenvectors are, in fact, prescribed on the

basis of symmetry considerations alone. The influence

of reciprocal coupling is felt directly as a reduction of the

effective gyromagnetic coupling factor ~ for any particu-

lar value of ~. The dependence of the ~/~ ratio on the

reciprocal coupling factor p has been plotted in Fig. 7.

The normalization factor ~~/2 which appears in the

&/~ ratio term is consistent with the fact that the eigen-

vector currents occur at a 120° phase relation rather

than at the quadrature phase relation leading to maxi-

mum coupling. The effective coupling parameter ~ is the

important quantity, of course, and depends on the ex-

tent of circular polarization generated by the super-

position of the magnetic fields produced by the currents

in each of the three lines.

Having determined the eigenvectors and eigenvalues

of the W matrix, it is possible to calculate the character-

istic immitances for the three normal modes. Because

the L and C matrices possess the same basic symmetry

properties as the K matrix, the eigenvectors of voltage

and current are also eigenvectors of L and C, and the

Hermitian forms itLi and vtCv of (17) and (18) in fact

merely generate the eigenvalues of these matrices,

Since the C matrix is the simpler of the two, its eigen-

values will be calculated; they are

(84)

The characteristic impedances are then given by

~~here VP is the phase velocity of propagation of the fll

mode. Clearly, 21 ~~ is a function only of the

parameter p, ~vhile the corresponding normalized values

z,4~ and ZIV’~/~. depend on both P and .!. The

relationship of (86) is accordingly plotted as a single

curve in Fig. 8, with those of (87) and (88) taking the

form of curves exactly like those of Fig. 3, except that

RECIPROCAL COUPLING FACTOR

Fig. 7, Reduction of effective gyrornagnetic coupling as a
result of reciprocal coupling.
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EIGENVALUE RATIO ‘YCZ

Fig. 9. Relation of the reciprocal coupling factor to the capacitive
eigenvalue ratio for a TEM symmetrical three-line.

the abscissa is in units of ~ and the ordinate values are

multiplied by the @-dependent factor given in Fig. 7.

Finally, the capacitive eigenvalue ratio cl/@ (which is

easily measured) has been related to the reciprocal

coupling factor P in Fig. 9.

CONCLUSIONS

The goal which provided the original impetus to this

paper was that of developing a network-theoretical

model which was reasonably simple, yet complete

enough to describe the sort of behavior observed and

reported for transmission-line systems in a ferrite

medium. The particular distributed-gyrator combina-

tion that has been presented previously was chosen

after an examination of several configurations showed it

to be best able to describe known limiting cases of ferrite

behavior. Like most other network models of physical

situations, it is acceptable if it is sufficiently plausible,

and useful if it is sufficiently accurate. Assuming plausi-

bility to be reasonably well established, the chief dif-

ficulty with this model is likely to be the extent to which

accurate computation of the gyromagnetic coupling

factors can be carried out. Perhaps the most expedient

way of determining the coupling factors for any given

geometry will be actually to build a structure and mea-

sure its behavior, using the model as a guide to under-

standing measured results. While this approach may not

be very satisfying to the analytically minded, it is ac-

cepted practice in large segments of the engineering

world.

In common with other network models, certain limi-

tations exist on the applicability of the model which has

been developed here. One of the obvious limitations

arises out of the restriction of the analysis to Iossless

lines. Practical ferrites, like practical passive reciprocal

networks, always exhibit losses to a greater or lesser de-

gree. Ferrite losses are especially troublesome when the

frequency of excitation can couple energy to domains at

gyromagnetic resonance. This situation can exist when

the ferrite is biased to resonance by the applied mag-

netic field, when the ferrite is unsaturated at frequencies

below WM = T4Trikf,, or when the applied field is low and

a nonlinear high-power loss threshold is exceeded at

frequencies below 2@M. These high-loss regions are un-

desirable for the sort of conditions where the coupled-

line model would apply, and hence must be avoided.

Under other conditions, the ferrite losses, while higher

than an unfilled line, are generally low enough so that

the main effect is that of a slight attenuation of the

modes in propagation along the structure. This attenua-

tion, however, is likely to be substantially greater for

the mode which couples to the spin system of the ferrite

than for the oppositely rotating mode.

Another potential source of difficulty in applying the

simple model is the existence, in any given structure, of

higher-order modes. If such modes can propagate, the

transmission-line ensemble is, in effect, increased in

complexity by their number. However, even though a

higher-order mode is in a cutoff state, its presence as an

evanescent mode of appreciable amplitude may cause

substantial modification of the frequency dependence of

the ensemble. Such behavior is most likely when the

cross-sectional dimensions of the transmission structure

begin to be an appreciable fraction of a wavelength

(e.g., a half-wavelength) at the operating frequency.
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